## Experimental Probability Vs. Theoretical Probability

## Objectives \& Standards

- To explore experimental and theoretical probability with experiments and simulations
- To calculate and compare both probabilities
- MA.E.2.3.1
- MA.E.3.3.1


## What do you know about probability?

- Probability is a number from 0 to 1 that tells you how likely something is to happen.
- Probability can have two approaches -experimental probability -theoretical probability


## Key Words

- Experimental probability
-Theoretical probability
- Law of Large Numbers
- Outcome
- Event
- Random


## Experimental vs.Theoretical

Experimental probability:
$P$ (event) = number of times event occurs total number of trials
Theoretical probability:
$P(E)=$ number of favorable outcomes total number of possible outcomes

How can you tell which is experimental and which is theoretical probability?

Experimental:
You tossed a coin 10 times and recorded
a head 3 times, a tail 7 times

$$
P(\text { head })=3 / 10
$$

$$
P(\text { tail })=7 / 10
$$

## Theoretical:

Toss a coin and getting a head or a tail is $1 / 2$.

$$
\begin{gathered}
P(\text { head })=1 / 2 \\
P(\text { tail })=1 / 2
\end{gathered}
$$

## Experimental probability

Experimental probability is found by repeating an experiment and observing the outcomes.
$P($ head $)=3 / 10$
A head shows up 3 times out of 10 trials,
P (tail) $=7 / 10$
A tail shows up 7 times out of 10 trials

## Theoretical probability

$P($ head $)=1 / 2$

$P($ tail $)=1 / 2$
Since there are only two outcomes, you have 50/50 chance to get a head or a tail.

## Compare experimental and theoretical probability

Both probabilities are ratios that compare the number of favorable outcomes to the total number of possible outcomes

$$
\begin{aligned}
& P(\text { head })=3 / 10 \\
& P(\text { tail })=7 / 10
\end{aligned}
$$

$$
\begin{aligned}
& P(\text { head })=1 / 2 \\
& P(\text { tail })=1 / 2
\end{aligned}
$$

## Identifying the Type of Probability

- A bag contains three red marbles and three blue marbles.
$P($ red $)=3 / 6=1 / 2$
$\checkmark$ Theoretical
(The result is based on the possible outcomes)


## Identifying the Type of Probability

- You draw a marble out

| Trial | Red | Blue |
| ---: | ---: | ---: |
|  | 1 |  |
| 2 |  | 1 |
|  | 1 |  |
|  |  |  |
| 4 |  | 1 |
| 5 |  | 1 |
| 6 |  | 1 |
| Total |  | 2 | of the bag, record the color, and replace the marble. After 6 draws, you record 2 red marbles

$P($ red $)=2 / 6=1 / 3$
$\checkmark$ Experimental
(The result is found by repeating an experiment.)

## How come I never get a theoretical value in both experiments? Tom asked.

- If you repeat the experiment many times, the results will getting closer to the theoretical value.
- Law of the Large Numbers

Experimental VS. Theoretic


## Law of the Large Numbers 101

- The Law of Large Numbers was first published in 1713 by Jocob Bernoulli.
- It is a fundamental concept for probability and statistic.
- This Law states that as the number of trials increase, the experimental probability will get closer and closer to the theoretical probability.


## Contrast experimental and theoretical probability

Experimental probability is the result of an experiment.

Theoretical
probability is what is expected to happen.

## Contrast Experimental and theoretical probability

Three students tossed a coin 50 times individually.

- Lisa had a head 20 times. ( $20 / 50=0.4$ )
- Tom had a head 26 times. ( $26 / 50=0.52$ )
- Al had a head 28 times. $\quad(28 / 50=0.56)$
- Please compare their results with the theoretical probability.
- It should be 25 heads. $(25 / 50=0.5)$


## Contrast Experimental and theoretical probability

|  |  | Summary of toss up results |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |
| Name | \# of Heads | $\operatorname{Exp} \mathrm{P}(\mathrm{H})$ | $\mathrm{P}(\mathrm{H})$ | \# of Tails | $\operatorname{Exp} \mathrm{P}(\mathrm{T})$ | $\mathrm{P}(\mathrm{T})$ |
| Lisa | 20 | 0.4 | 0.5 | 30 | 0.6 | 0.5 |
| Tom | 26 | 0.52 | 0.5 | 24 | 0.48 | 0.5 |
| Al | 28 | 0.56 | 0.5 | 22 | 0.44 | 0.5 |

Experimental Vs. Theoretical


## Lesson Review

- Probability as a measure of likelihood
- There are two types of probability
- Theoretical--- theoretical measurement and can be found without experiment
- Experimental--- measurement of a actual experiment and can be found by recording experiment outcomes

